A Computational "Rheometer" for Turbulent Flows

Ali Mani

Center for Turbulence Research Stanford University

Graduate Students: Danah Park, Yasaman Shirian

Advanced Modeling & Simulation (AMS) Seminar Series NASA Ames Research Center, February 6, 2020

Motivations

Standard eddy diffusivity model and Boussinesq approximation in RANS equation

$$-\frac{\partial}{\partial x_j} (\overline{u_j' u_i'}) = \left[\frac{\partial}{\partial x_j} \left[\nu_T \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \right] - \frac{\partial}{\partial x_j} \frac{2}{3} k \delta_{ij} \right]$$

- Researchers often ask: "how to tune $\nu_T(x,y,z)$?"
- We study: "what should the entire operator look like?"
- Motivations: the standard model is not truly predictive for many practical flows

Simpler Question: Scalar Transport

Instantaneous equation of passive scalar transport (Microscopic)

$$\frac{\partial c}{\partial t} + u_j \frac{\partial c}{\partial x_j} = \frac{\partial}{\partial x_j} \left(D_{ji} \frac{\partial c}{\partial x_i} \right)$$

Averaged equation (Macroscopic)

$$\bar{\mathcal{L}}\bar{c} = \left[\frac{\partial}{\partial t} + U_j \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \left(D_{ji} \frac{\partial}{\partial x_i}\right) + \bar{\mathcal{L}}'\right]\bar{c} = 0$$

Linear

Standard eddy diffusivity model

$$\bar{\mathcal{L}}'\bar{c} = \frac{\partial}{\partial x_j} (\overline{u_j'c'}) \approx -\frac{\partial}{\partial x_j} \left[D_T \frac{\partial \bar{c}}{\partial x_j} \right]$$

Macroscopic Forcing Method (MFM)

Investigate response to forcing

$$\frac{\partial c}{\partial t} + u_j \frac{\partial c}{\partial x_j} = \frac{\partial}{\partial x_j} \left(D_{ji} \frac{\partial c}{\partial x_i} \right) + s$$
 Condition: $s = \bar{s}$

S survives in averaging the equation

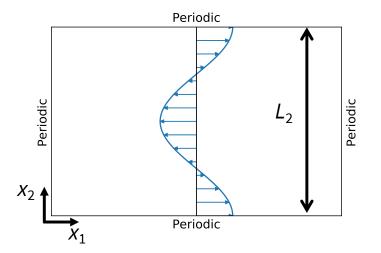
$$\bar{\mathcal{L}}\bar{c} = \left[\frac{\partial}{\partial t} + U_j \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \left(D_{ji} \frac{\partial}{\partial x_i}\right) + \bar{\mathcal{L}}'\right]\bar{c} = s$$

- Perform many DNSs to compute $ar{c}$ in response to different s
- Obtain a linear system $ar{\mathcal{L}}ar{c}=s$ and rearrange to obtain $ar{\mathcal{L}}'$
- Expensive!

Example: A 2D Parallel Flow (1/6)

Steady, parallel, velocity field

$$u_1 = U \cos\left(\frac{2\pi}{L_2}x_2\right)$$



Example of 2D solution for c ("expensive DNS")

• Quantity of interest \bar{c}

• What 1D equation ("RANS") can directly predict \overline{C} ?

Example: A 2D Parallel Flow (2/6)

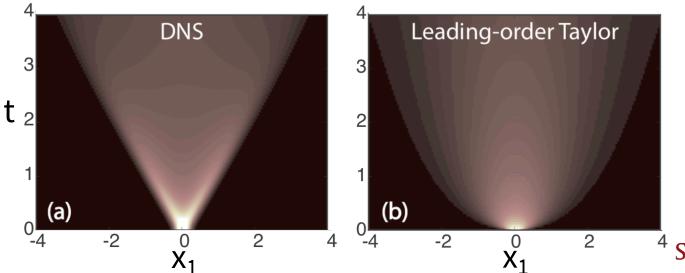
Dimensionless Microscopic Equation

$$\frac{\partial c}{\partial t} + \cos(x_2) \frac{\partial c}{\partial x_1} = \frac{\partial^2 c}{\partial x_2^2} + \epsilon^2 \frac{\partial^2 c}{\partial x_1^2}, \qquad \epsilon = 2\pi D_M / (L_2 U)$$

Approximate model using method of G. I. Taylor (1953)

$$\frac{\partial \overline{c}}{\partial t} = \frac{1}{2} \frac{\partial^2 \overline{c}}{\partial x_1^2}$$

macroscopic diffusivity = D_{eff} =1/2 valid for large-scale



Stanford University

Example: A 2D Parallel Flow (3/6)

- MFM analysis:
 - Add forcing to the governing equation

$$\frac{\partial c}{\partial t} + \cos(x_2) \frac{\partial c}{\partial x_1} = \frac{\partial^2 c}{\partial x_2^2} + s(x_1, t)$$

- For different s find the linear response \bar{c}
- Homogeneity allows analysis in Fourier space

$$s(x_1, t) = \exp(i\omega t + ikx_1)$$

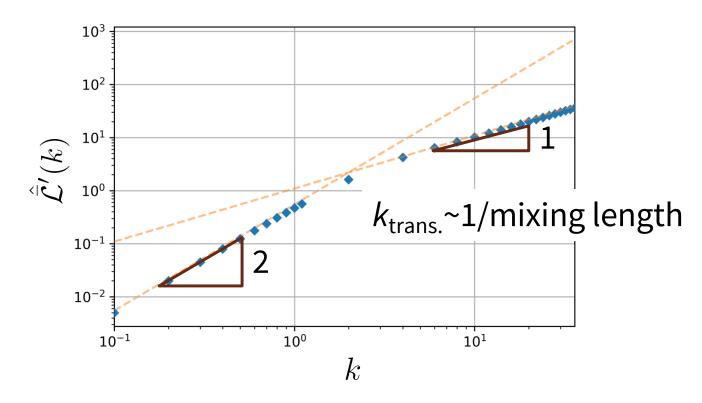
$$\Longrightarrow \overline{c}(x_1, t) = \overline{\hat{c}}\exp(i\omega t + ikx_1)$$

$$\Longrightarrow \widehat{\overline{\mathcal{L}}} = 1/\overline{\hat{c}}(\omega, k)$$

Example: A 2D Parallel Flow (4/6)

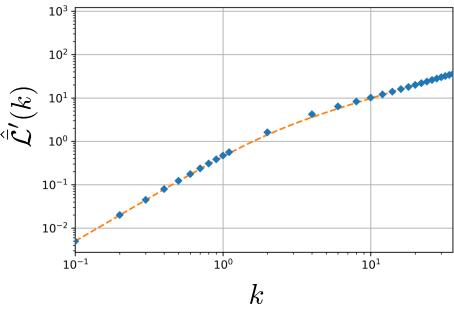
- MFM result (steady limit, ω=0)
 - Remember Taylor/Boussinesq prediction

$$\bar{\mathcal{L}}' = -D_T \frac{\partial^2}{\partial x^2} \Longrightarrow \hat{\bar{\mathcal{L}}}' \propto k^2$$



Example: A 2D Parallel Flow (5/6)

Macroscopic operator (steady limit, ω=0)



Fitted operator:

Fitted expression

$$\hat{\bar{\mathcal{L}}}'(k) = \frac{Ak^2}{\sqrt{1 + (Bk)^2}}$$

- Not a number but an operator
 - Suppressed in small-scale limits
 - Non-local operator

$$\bar{\mathcal{L}}' = -\frac{\partial}{\partial x} \left[\frac{D_T}{\sqrt{1 - \ell_T^2 \frac{\partial^2}{\partial x^2}}} \frac{\partial}{\partial x} \right]$$

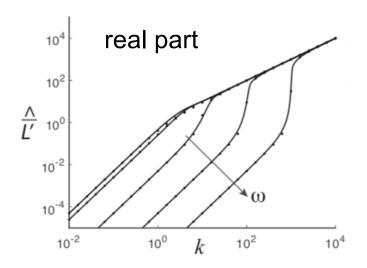
Outline

- Go back and relax simplifications
 - Unsteady problems
 - Molecular diffusivity active in all directions
 - Unsteady 3D flows
 - Extension from scalar transport to Navier-Stokes
 - Extension to non-homogeneous flows
 - Computational cost

An example incorporating all of the above

Example: A 2D Parallel Flow (6/6)

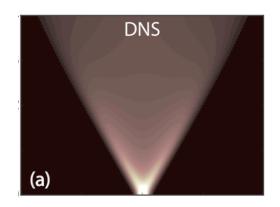
Solution to the unsteady problem

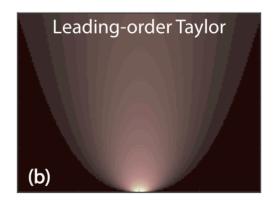


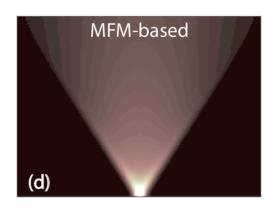
fitted operator

$$\left[\sqrt{\left(\mathcal{I} + \frac{\partial}{\partial t}\right)^2 - \frac{\partial^2}{\partial x_1^2}} - \mathcal{I}\right] \bar{c}(x_1, t) = s(x_1, t)$$

Evaluation of performance





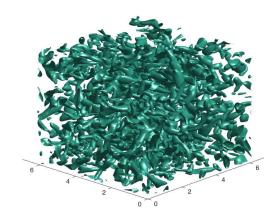


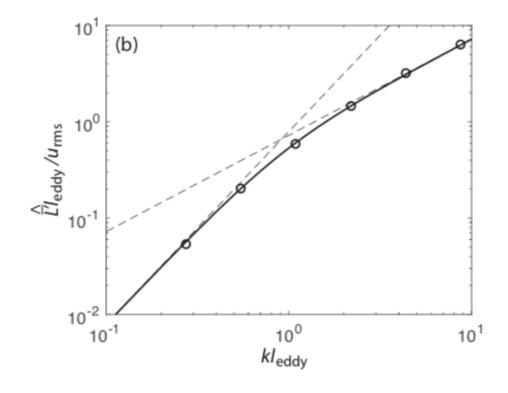
Stanford University

Extension to Turbulent Flows

- What will happen if velocity is 3D, unsteady, and turbulent?
- Test case: Homogeneous Isotropic Turbulence (HIT) at Re_λ=40

$$\frac{\partial c}{\partial t} + u_j \frac{\partial c}{\partial x_j} = \frac{\partial}{\partial x_j} \left(D_{ji} \frac{\partial c}{\partial x_i} \right) + s$$





Fitted operator:

$$\overline{\mathcal{L}'} = -
abla . \left[rac{D^0}{\left(\mathcal{I} - l^2
abla^2
ight)^{1/2}}
abla
ight]$$

MFM for Navier-Stokes (1/2)

First obtain DNS (or measurement) of flow field

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_j u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j} + r_i,$$
$$\frac{\partial u_j}{\partial x_j} = 0,$$

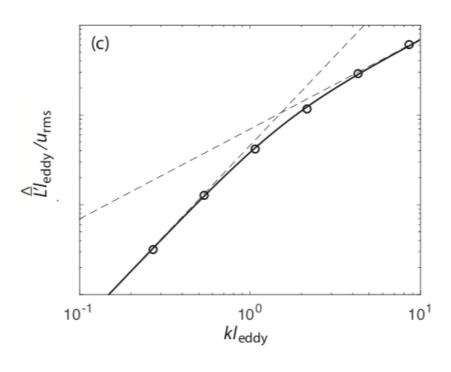
- Nonlinearity and interpretation of nonlinear term
- Apply MFM to a generalized momentum transport equation (GMT)

$$\frac{\partial v_i}{\partial t} + \frac{\partial u_j v_i}{\partial x_j} = -\frac{\partial q}{\partial x_i} + \nu \frac{\partial^2 v_i}{\partial x_j \partial x_j} + s_i,$$
$$\frac{\partial v_j}{\partial x_i} = 0,$$

- Linear system, (N.S. is its special case)
- Operator dependent on flow

MFM for Navier-Stokes (2/2)

• Example: MFM + GMT applied to HIT (Re_{λ} =40)



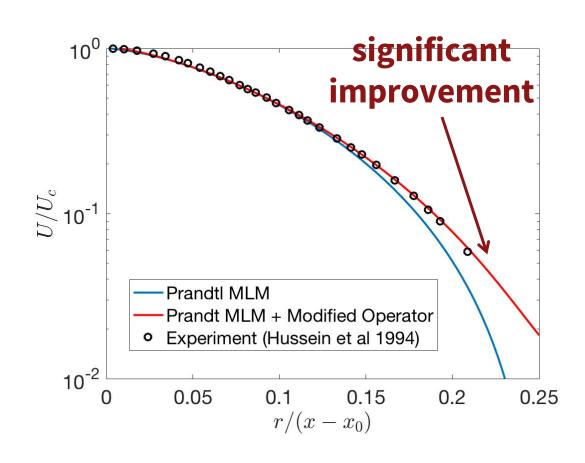
Fitted operator:

$$\overline{\mathcal{L}'} = -\nabla \cdot \left[\frac{D^0}{(\mathcal{I} - l^2 \nabla^2)^{1/2}} \nabla \right]$$

- Turbulent Schmidt number $Sc_T = D_V^0/D_c^0 = 0.5$
- $l_c = 1.1 l_{\text{eddy}}, l_v = 0.6 l_{\text{eddy}}$

Impact on Prediction of Practical Flows

- Can the operator already obtained improve prediction of mean velocity profile?
 - Example: turbulent round jet → self-similar solution
 - Use Prandtl Mixing Length Model to determine D and I



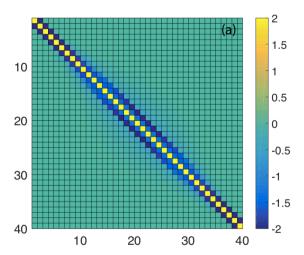
Outline

- Go back and relax simplifications
 - Unsteady problems
 - Molecular diffusivity active in all directions
 - Unsteady 3D flows
 - Extension from scalar transport to Navier-Stokes
 - Extension to non-homogeneous flows
 - Computational cost

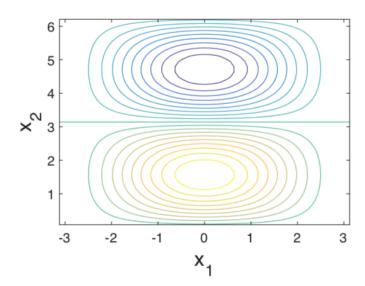
An example incorporating all of the above

Extension to Inhomogeneous Flows (1/2)

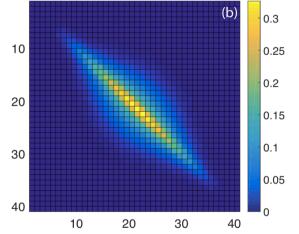
- Example: transport between two walls
 - Left/right BC: Dirichlet condition
 - Top/bottom: periodic condition
 - Averaging defined in x₂
 - Steady limit
 - Macroscopic model is 1D
- MFM Result:



 $\overline{\mathcal{L}}:$ discrete macroscopic operator



$$\left[\overline{\mathcal{L}}\right] = -\left[\partial/\partial x_1\right] \left[\mathcal{D} + D_M \mathcal{I}\right] \left[\partial/\partial x_1\right]$$



D = Eddy diffusivity operator
is a convolution kernel!

Most General Form of Eddy Diffusivity

Scalar transport

$$-\overline{u_{j}'c'} = \mathcal{D}\nabla\overline{c} = \int_{\mathbf{y}} D_{ji}(\mathbf{x}, \mathbf{y}) \frac{\partial\overline{c}}{\partial x_{i}}|_{\mathbf{y}} d\mathbf{y}$$

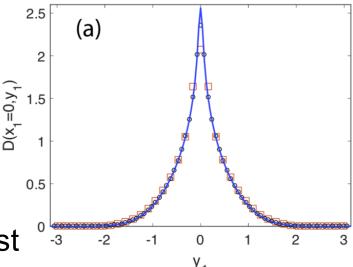
Momentum transport

$$-\overline{u_{j}'v_{i}'} = \mathcal{D}\nabla\overline{\mathbf{v}} = \int_{\mathbf{y}} D_{jilk}\left(\mathbf{x}, \mathbf{y}\right) \frac{\partial \overline{v_{k}}}{\partial x_{l}}|_{\mathbf{y}} d\mathbf{y}.$$

- MFM allows precise measurement of D
 - Expense?

A fast method for computation of kernel moments

$$-\overline{u'c'}(x_1) = \int_{y_1} D(x_1, y_1) \frac{\partial \overline{c}}{\partial x_1} |_{y_1} dy_1 \qquad \widehat{\mathbb{E}}_{[x_1, y_1]}^{2}$$



Inverse MFM (not presented)

Can obtain moments of D at affordable cost

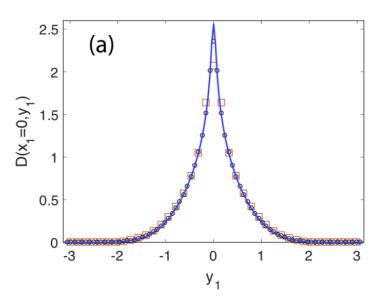
$$D^{0}(x_{1}) = \int_{y_{1}} D(x_{1}, y_{1}) dy_{1}$$

$$D^{1}(x_{1}) = \int_{y_{1}} (y_{1} - x_{1}) D(x_{1}, y_{1}) dy_{1}$$

$$D^{2}(x_{1}) = \int_{y_{1}} \frac{1}{2} (y_{1} - x_{1})^{2} D(x_{1}, y_{1}) dy_{1}$$

Boussinesq Approximation

$$-\overline{u'c'}(x_1) = \int_{y_1} D(x_1, y_1) \frac{\partial \overline{c}}{\partial x_1} |_{y_1} dy_1 \qquad \widehat{\mathbb{E}}_{[x_1, y_1]}^{2}$$

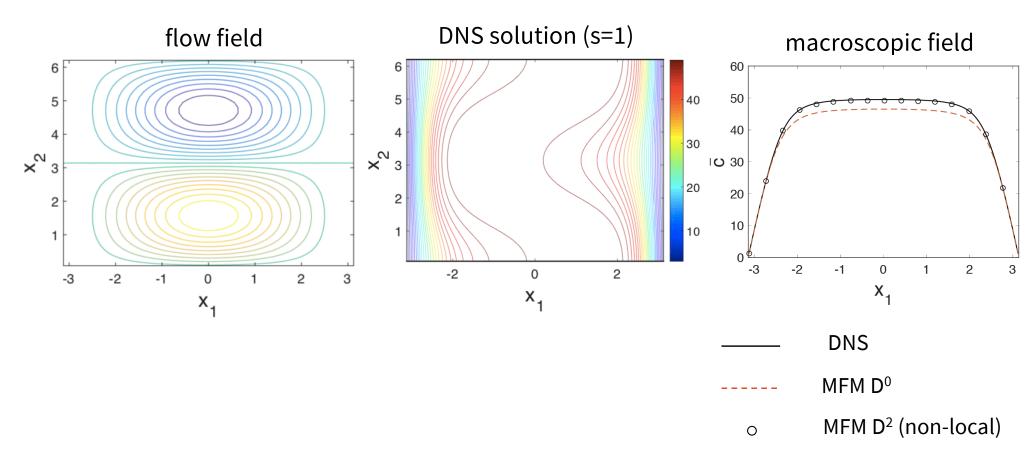


If kernel width ~ eddy size << macroscopic length

$$-\overline{u'c'}(x_1) \simeq \left(\int_{y_1} D(x_1, y_1) dy_1\right) \frac{\partial \overline{c}}{\partial x_1} = D^0(x_1) \frac{\partial \overline{c}}{\partial x_1}$$

→ Provides a quantitative framework for assessment of the Boussinesq approximation
Stanford University

Example Application



$$\frac{\partial}{\partial x_1} \left(D_M \frac{\partial \overline{c}}{\partial x_1} \right) + \frac{\partial}{\partial x_1} \left(\int_{y_1} D\left(x_1, y_1 \right) \frac{\partial \overline{c}}{\partial x_1} |_{y_1} dy_1 \right) = \mathbf{0}$$

Can construct approximate kernels by matching higher moments of $D(x_1,y_1)$

Stanford University

Outline

- Go back and relax simplifications
 - Unsteady problems
 - Molecular diffusivity active in all directions
 - Unsteady 3D flows
 - Extension from scalar transport to Navier-Stokes
 - Extension to non-homogeneous flows
 - Computational cost

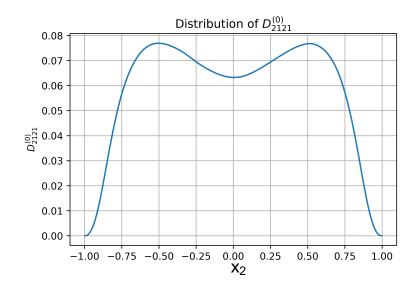
An example incorporating all of the above

IMFM Applied to Turbulent Channel Flow at Re_T=180 (1/3)

- Only 9 DNSs required to compute D⁰_{jilk}
- All 81 coefficients computed versus distance from wall
 - This is the eddy-diffusivity tensor!
 - Represents truncated operator up to the leading (local) term

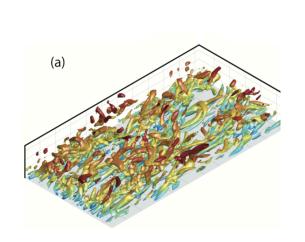
$$-\overline{u_{j}'v_{i}'} = \mathcal{D}\nabla\overline{\mathbf{v}} = \int_{\mathbf{y}} D_{jilk}\left(\mathbf{x}, \mathbf{y}\right) \frac{\partial \overline{v_{k}}}{\partial x_{l}}|_{\mathbf{y}} d\mathbf{y}.$$

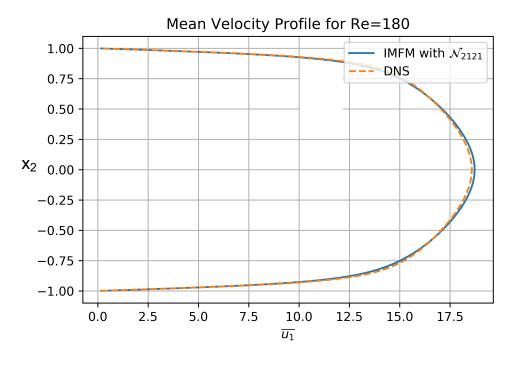
- Analysis of non-local terms in progress
- Example profile (one out of 81 profiles)
- MFM can measure eddy diffusivity on the centerline!



IMFM Applied to Turbulent Channel Flow at Re_T=180 (2/3)

 Leading order model (D⁰) is sufficient for RANS prediction of channel flow (nonlocal effects not dominant for this example)





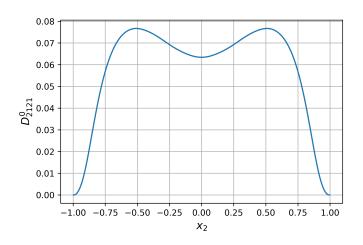
Error due to neglecting of non-local effects ~ 1.5% (converged)

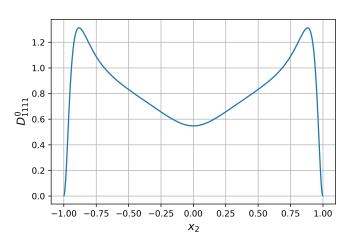
IMFM Applied to Turbulent Channel Flow at Re_T=180 (3/3)

- Eddy diffusivity is highly anisotropic (non-Boussinesq)
 - Let's examine streamwise momentum equation

$$\frac{\partial \overline{v_1}}{\partial t} + \dots = \dots + \frac{\partial}{\partial x_2} \left(D_{2121}^0 \frac{\partial \overline{v_1}}{\partial x_2} \right) + \dots + \frac{\partial}{\partial x_1} \left(D_{1111}^0 \frac{\partial \overline{v_1}}{\partial x_1} \right)$$

- Boussinesq approx. prescribes D⁰₁₁₁₁=D⁰₂₁₂₁
- Our measurement shows D⁰₁₁₁₁ is ~16 times larger than D⁰₂₁₂₁!





- In parallel flows (e.g. channel) the difference does not matter
- What about onset of separation?

Final Words

- We developed a rheometer for turbulent flows
- Standard rheometer for laminar flow measures momentum diffusivity
 - Assumes the underlying Brownian motion (transporter of momentum) remains unaffected by rheometry
 - MFM honors this condition for turbulent flows

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_j u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j} + r_i,$$

- MFM informs closure model forms:
 - → anisotropy, non-locality
- Ref: Mani, A. and Park, D., "Macroscopic forcing method: a tool for turbulence modeling and analysis of closures," Physical Review Fluids Stanford University

Thank you